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In order to solve the location routing problem (LRP) by means of energy saving and

environmental protection, we propose a LRP optimization model with bi-objectives of

minimizing the carbon emissions and the distribution costs. To address the shortcomings of

traditional heuristics in solving large-scale LRPs with poor generality and low efficiency, an

improved fast non-dominated ranking genetic algorithm (NSGA-II) is proposed and applied to

the LRP optimization. In order to improve the convergence and optimization ability of the

algorithm, an improved method of adaptive crossover operator and adaptive population size

adjustment is introduced on the basis of the original method. With the benchmark test example

solved, the algorithm is able to design an accurate, efficient and intelligent scheduling scheme for

solving the established LRP model. Compared with the traditional heuristic algorithm in terms of

the overall quality of the solution and the convergence efficiency of a single solution, the

feasibility and effectiveness of the proposed method are verified.
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1 Introduction

With the rapid development of the social economy and the improvement of the

living standard of the residents, the whole human race is increasingly concerned about

a series of environmental problems such as air pollution [1], energy saving and

emission reduction gradually become the theme of the development of all walks of

life [2-3]. Therefore, the logistics industry, as a major emitter of greenhouse gases [4],

should vigorously carry out energy conservation and emission reduction, and is

committed to achieving green logistics. Optimizing logistics scheduling to reduce CO2

emissions is not only an energy saving and emission reduction measure, but also a

cost reduction for enterprises to enhance their competitiveness in their own industries.

The main function of logistics distribution center is to gather and handle goods.

It can be regarded as an entity engaged in large-scale and multifunctional logistics

activities in enterprises, which makes it must have warehousing, packaging,

transportation, information transmission, circulation and processing functions. The

location of logistics distribution center is related to the cost, efficiency and service

level of logistics distribution. Many studies have shown that goods spend more in the

process of distribution, and the location of logistics distribution center has a great role

in saving distribution costs and improving distribution efficiency and service quality.

In the past few years, most companies involved in the logistics industry have

established distribution centers. Before the emergence of new distribution centers, the

functions of distribution centers were similar to those of operational logistics nodes.

With the continuous development of the industry, part of the distribution centers only

assumed the function of transfer stations, i.e., mainly responsible for the distribution

of different modes and scales of transportation, while another part enhanced the

function of "delivery" and later developed in the direction of "distribution". From the

perspective of international logistics development, the development of logistics

distribution center is not only the objective requirement of logistics rationalization,

but also the result of modern social productivity development. Therefore, the

establishment of logistics distribution centers should be based not only on the

development needs of the logistics market but also on the rationalization of logistics.

In terms of enterprises, how to find the optimal site selection plan is the important

research problem to improve their logistics system.
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To my best knowledge, the purpose of logistics distribution center site selection

can be divided into three categories. Specifically, 1) Provide quality logistics services:

quality logistics service is essential in the fierce market competition. As a professional

logistics service facility, the logistics distribution center needs to meet the

requirements of customers for small quantities, multiple types, high frequency and

short delivery periods, and also to complete the delivery tasks in terms of quality and

quantity, so as to gain competitive advantages with quality logistics service. 2)

Reduce logistics costs: as a hub facility, logistics distribution center connects the

production sector and consumers, and works as an institution that creates space value

and time value. By centralizing logistics nodes to establish large logistics distribution

centers, we can realize centralized inventory, scale procurement and cost saving.

Collaborative distribution can also achieve the purpose of reducing transportation

costs, construction fees, labor costs, land purchase fees, etc., which is conducive to

reducing the total cost of logistics. 3) Focus on social benefits: logistics distribution

center site selection should be from the perspective of the logistics system, so that it

not only adapts to the regional logistics resources, regional distribution and demand

distribution, but also to the local economic development requirements. At the same

time, the site selection planning should also consider the environment and promote

green logistics. In addition, it should also consider issues such as reducing

unreasonable transportation such as over-distance transportation and convection

transportation.

Logistics distribution center site selection has an important role in the overall

logistics system. Whether it is the government planning the logistics system of the

whole city, or the enterprise planning its own logistics operation network, it is

inseparable from the scientific and reasonable analysis of logistics site selection.

Since logistics distribution centers generally have a large scale of investment in

construction, take up a lot of land in the city and should not be changed once built, it

will have a long-term impact on society and enterprises, so a detailed demonstration is

needed before choosing a site for the logistics distribution center. If the site selection

fails, it may not only lead to lower profits because the company cannot meet the

requirements of the demand point, but also have an impact on the overall social

production and efficiency of commodity exchange.
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As one of the most effective means of logistics site selection, the optimization

problem of logistics scheduling broadly includes distribution center selection problem,

cargo distribution problem, vehicle path problem, etc. As the core function of the

logistics system, distribution is directly related to the customer, and the quality of the

completion of the distribution function directly affects the customer's satisfaction of

the whole logistics service. As the core part of distribution, the optimization for

vehicle distribution routes is crucial to the overall logistics transportation speed, cost

and efficiency.

Therefore, this paper innovatively uses an improved NSGA-II algorithm to solve

the environmental LRP model. The remainder of this paper is organized as follows:

Section 2 introduces the work related to the location routing problem solved by

optimization algorithm; In Section 3, we develop an environmental LWR

mathematical model and design an improved NSGA-II algorithm.; Section 4 presents

the numerical experiments and the comparison of the results; Finally, some import

findings are concluded in Section 5.

2 Related work

Recently, distribution network is the basis of logistics distribution system

operation, and reasonable distribution center location and vehicle route planning play

an important role in the effective operation of distribution system. The

Location-Routing Problem integrates both the addressing problem and the vehicle

path optimization problem, and various LRP problems and their extensions have been

studied by many researchers.

The Location Routing Problem model takes into account both location and route

optimization. The multi-objective LRP model also takes into account factors such as

location and distribution costs, distribution time, and carbon emissions. The

multi-objective LRP model is more valuable in practical applications, and the

scheduling solutions obtained by using this model are more competitive in all aspects.

Therefore, the multi-objective LRP model has been extensively studied and analyzed

by scholars. Vahdani et al. [5] studied the efficient distribution of relief supplies and

materials in post-earthquake relief operations by proposing a multi-objective mixed

mathematical model with total cost and travel time as objectives. The
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multi-objective problem with service time constraints was studied by Nedjati et al. [6]

To solve the distribution center replenishment as well as the siting problem for

customers moving within a predetermined walking distance , a new bi-objective

integer linear programming model is proposed , which minimizes the total weighted

waiting time and the total amount of losses as the objective . Bozorgi-Amiri et al. [7]

propose a multi-objective dynamic stochastic programming model for humanitarian

relief logistics problems. The model proposes three objectives: the maximum shortage

for all periods in the affected area, the total travel time, and the sum of pre- and

post-disaster costs. Asgari et al. [8] propose a multi-objective model for waste

location and routing problems considering various types of waste and multiple

treatment technologies. The model includes three objective functions that maximize

the demand of treatment facilities, minimize the various costs associated with the

problem, and ultimately reduce the risk of transporting untreated materials.

Considering the location of distribution centers and vehicle routing in the available

traffic network, Wang et al. [9] constructed a nonlinear LRP model that minimizes

travel time, total cost, and maximizes delivery reliability. In the most recent studies of

LRP problems, when considering low carbon problems, many studies have mostly

added low carbon as one of the constraints or as a penalty factor [10] to the objective

function of the system cost, and it is difficult to avoid having a preference for one

objective or setting the importance of different objectives in the optimization process.

In this paper, the carbon emission minimization is taken as the second objective

function and the system cost together constitute a dual objective model for

optimization. There is no preference information for the target value in the

optimization process.

With the increasing awareness of environmental protection, people are also

beginning to notice the environmental pollution caused by CO2 emissions in the

logistics and distribution process. Green logistics and distribution system design is of

great significance for the development of sustainable logistics. Currently, there are

fewer studies on the environmental LRP problem. Govindan et al. [11] study the

perishable two-level LRP problem with time windows in the food supply chain while

minimizing cost and environmental impact. Tricoire et al [12] studied the urban hub

LRP problem while optimizing the cost and CO2 emissions. Dukkanci et al. [13] study
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the green LRP problem by developing a single-objective optimization model that

minimizes the operating cost and emission cost and considers the time window

constraint. In the study of the Green Vehicle Routing Problem (GVRP), existing

studies have typically used fuel consumption models or methods that calculate traffic

emissions and energy consumption to characterize the environmental factors that

should be considered in VRP modeling. Kara et al. [14] first extended the Capacitated

Vehicle Routing Problem to study the CVRP model for energy minimization and

described it as an integer linear programming problem, which was solved using

CPLEX. Raeesi et al. [15] investigated a multi-objective Pollution-Routing Problem

(PRP) with a time window, assuming that carbon emissions are time- and

load-dependent, with the objective functions of minimizing vehicle rental costs,

minimizing total fuel consumption, and minimizing path time. Ashtineh et al. [16]

investigated the VRP with alternative fuels by developing a mixed integer

programming model with distance, load, speed and transmission ratio as the main

factors affecting vehicle emissions, and their study evaluated the economic and

environmental performance of alternative fuels in the VRP. Macrina et al. [17]

incorporated speed, acceleration, deceleration, load and other factors into a

comprehensive energy consumption model, studied the green VRP model of a hybrid

fleet consisting of an electric vehicle and a traditional diesel locomotive, and designed

an embedded large domain search heuristic algorithm.

Location‐Routing Problem is the integration of FLP (Facility location problem)

and VRP (Vehicle Routing Problem). FLP and VRP have a mutual influence on each

other, and the classical LRP research literature demonstrates that the integration and

optimization of the two can reduce system costs and promote scientific

decision-making. Koç et al. [18] studied LRP in urban logistics by considering fuel

consumption and CO2 emissions in the system cost and proposed a new adaptive

large neighborhood search heuristic. Toro et al. [19] propose a new model for

calculating GHG emissions from vehicle routes, investigating capacity-constrained

LRPs that take into account environmental impacts. Their study shows that using

more vehicles leads to greater fuel economy and thus reduced emissions, and that

activating more vehicles on short routes and prioritizing high-demand customers can

also reduce emissions.



7

Therefore, this paper innovatively uses an improved NSGA-II algorithm to solve

the green LRP model and proposes a new adaptive crossover operator with adaptive

population size adjustment; on the basis of solving the traditional LRP, the effect of

carbon emission is considered. The proposed algorithm optimizes the scheduling

scheme and applies heuristic rules to select the optimal scheduling path, and finally

obtains a scientific and reasonable scheduling scheme.

3 The proposed model

In this section, the terms and concepts related to multi-objective optimization

problems are first introduced; then we describe the green LRP problem in detail and

model its mathematics; finally, we introduce an improved NSGA-II algorithm.

3.1 Multi-objective optimization problem

Multi-objective optimization problems are also known as multi-criteria

optimization problems. Without loss of generality, a multi-objective optimization

problem with � decision variables and � objective variables can be formulated as

follows:

min � = �(�) = (�1(�), �2(�), ⋯, ��(�))T

s. t. ��(�)⩽0, � = 1,2, ⋯, �
ℎ�(�) = 0, � = 1,2, ⋯, �

（1）

Where � = (�1, ⋯, ��) ∈ � ⊂ �� denotes a �-dimensional decision variable, �

represents the � -dimensional decision space; � = (�1
1, ⋯, �1

�) ∈ � ⊂ �� denotes a

�-dimensional objective vector, and � represents the objective space. Since there

are � objectives for the optimization problem, the objective function F(x) defines �

mapping functions from the decision space to the objective space. ��(�)⩽0(� =

1,2, ⋯, �) denotes � inequality constraints, while ℎ� � = 0(� = 1,2, ⋯, �)

represents � equality constraints. Based on this, several important definitions are

given below.

Definition 1. For � ∈ � , if � satisfies all the constraints in Equation (1) (i.e.,

��(�)⩽0, � = 1,2, ⋯, � and ℎ�(�) = 0, � = 1,2, ⋯, � ),then � is said to be a feasible

solution.

Definition 2. Suppose �� , �� ∈ � are two feasible solutions of the
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multi-objective optimization problem shown in Equation (1), then �� dominates ��

(denoted as �� ≻ ��)if and only if the following conditions are satisfied:

∀� = 1,2, ⋯, �, ��(��)⩽��(��) ∧ ∃
� = 1,2, ⋯, �, ��(��) < ��(��), （2）

Definition 3. A feasible solution �∗ is referred to as a Pareto optimal solution

(or non-dominated solution) if and only if the following conditions are satisfied:

∄ � ∈ X: � ≻ �∗ （3）

3.2 Environmental LRP problem description and modeling

In the study of logistics and operational issues , most of them have taken into

account the environmental impact of transport and the impact of the industrial

environment on the cost of transport activities.

(a) Problem description

In this paper, we propose a new mathematical model for LRP that considers fuel

consumption minimization. minimization. The problem is stated as follows.

Given a set of distribution centers � and customers �, the objective is to find

the best distribution center and its path to the customer point, and each distribution

center has set open cost �� . There is a transportation cost �� for transportation

between each two customer points (i.e., �, � �, � ∈ �). Each customer � ∈ � has a

demand �� , which can be delivered by only one vehicle. In total, there are �

vehicles of capacity �� available. There is a depreciation cost �� for each vehicle

transported between every two customer points (�, �) �, � ∈ �. In the traditional LRP

model, only one objective function is considered, i.e., minimizing the total operating

cost, which includes the open cost �� of the facility, the depreciation cost �� of the

vehicle and the transportation cost �� between two customer points. The model in

this paper includes a second objective function in addition to the operating cost, which

takes into account the carbon emissions due to the fuel consumption in transportation.

Ultimately, the LRP is optimized as a bi-objective problem.

(b) Description of symbols and variables

In this section, the relevant variables of the bi-objective LWR model based on
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operating costs and carbon emissions are described in Table 1.

Table 1 Description of symbols and variables
Symbol Description

�{�∣� = 1, ⋯, �} Set of distribution centers
�{�∣� = 1, ⋯, �} Set of customer coordinates

�{�∣� = 1, ⋯, �} Set of vehicles in distribution centers
�� Vehicles belonging to distribution center �

�{�⋃�} Set of distribution centers and customer points
�� Demand of customer �
��� The total amount of goods loaded by vehicles going to

Customer point � after leaving customer point �
�� Depreciation cost per unit vehicle
�� Cost per unit of fuel

�� Costs of opening distribution centers
��� Distance from customer � to customer �

�� Capacity of the vehicle �
�� Capacity of distribution centers �
���� A binary decision variable with a value of 1 indicates that

vehicle k travels from the distribution center � to the
customer �

�� Binary decision variable, a value of 1 means the
distribution center is open

(c) Calculation of carbon emissions

There are many factors that affect fuel consumption and CO2 emissions, such as

loading rate, driving distance, driving speed and terrain slope. It is not realistic to

quantitatively analyze all these factors, and we must make appropriate assumptions

and simplifications.

There are different methods to calculate CO2 emissions, and according to Kirby

et al. [20], CO2 emissions are proportional to fuel consumption. In this paper,

Equation (4) is used to calculate fuel consumption and CO2 emissions.

� = � × � × (� × � + �) （4）

Where � denotes the fuel consumption of the transportation process; �

represents the terrain slope factor; � is the distance traveled by the vehicle; �

indicates the weight of the load; � and � are the fuel consumption parameters.

Given a fuel conversion factor �, the CO2 emissions can be expressed as ���2 = � ×

�.

(d) Construction of mathematical models
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min �� �∈�� �� + �� �∈�� �∈�� �∈��
� ������� +

��� �∈�� �∈�� �∈��
� �������[���� + �]; （5）

min �� �∈�� �∈�� �∈��
� �������[���� + �]

（6）�. �. �∈�� �∈�� �∈��
� ���� = 1, ∀� ∈ �

（7）

�∈�� ���� = 1, ∀� ∈ �, ∀� ∈ �� （8）

�∈�� ���� = 1, ∀� ∈ �, ∀� ∈ �� （9）

�∈�� �∈�� ����⩽1, ∀� ∈ � （10）

�∈�� �∈�� ���� + �∈�� �∈�� ����⩽1, ∀� ∈ � （11）

�∈�� ��ℎ� − �∈�� �ℎ�� = 0, ∀ℎ ∈ �, � ∈ �� （12）

�∈��
� �∈�� �� �∈�� ����⩽����, ∀� ∈ � （13）

�∈�� �� �∈�� ����⩽��, ∀� ∈ �� （14）

�∈�� ��� − ���
� = ��, ∀� ∈ � （15）

��� − (�� − ��)����⩽0, ∀�, � ∈ �, � ∈ �� （16）

��� − ������⩾0, ∀�, � ∈ �, � ∈ �� （17）

�∈�� �∈�� ����⩽|�| − 1, ∀� ∈ �� （18）

���� ∈ {0,1}, ∀�, � ∈ �, � ∈ �� （19）

�� ∈ {0,1}, ∀� ∈ � （20）

Equation (5) and (6) are objective functions. The former is the opening cost of

distribution center plus vehicle depreciation cost plus fuel cost, and the latter is carbon

dioxide emissions. Due to the consideration of multiple real-world constraints, we

introduce many constraints in the environmental LRP model, which are described

below. Equation (7) guarantees that each client is visited once; Eq. (8) and Eq. (9)

show that the vehicle departs from the distribution center and must return to the

original distribution center; Eq. (10) ensures that each transport vehicle's path departs
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from at most one distribution center; To ensure that the vehicles from any two

distribution centers will not be on the same path, we set the constraint (11); Eq. (12)

ensures that service workers must leave after visiting customers, and Equation (13) is

a constraint to ensure that the total customer demand per distribution center visit is

less than the capacity of the distribution center; In addition to the relevant constraints

imposed on distribution centers, we have also imposed the following constraints on

the vehicles. Equation (14) ensures that the load of the vehicle is not allowed to

exceeding its load capacity, and the load of each vehicle have to meet the amount of

customer demand in Equation (15); Equation (16) and (17) ensure a numerical

relationship between ���� and ��� , i.e., ��� is a positive number when ���� = 1,

otherwise ��� is 0; Equation (18) is the subloop elimination constraint; Finally,

Equation (19) and (20) are simple constraints on the decision variables.

3.3 The improved NSGA-II algorithm

(a) The standard NSGA-II algorithm

As one of the most classical algorithms in the field of multi-objective

optimization, NSGA-II (Non-dominated Sorting Genetic Algorithm-II) is a powerful

multi-objective optimization algorithm based on genetic algorithm [21]. The core

modules of NSGA-II algorithm are fast non-dominated ranking and crowding

calculation. The former stratifies the population according to the strength and

weakness of the individuals and distributes them into several different frontiers, while

the latter describes the dispersion degree of the individuals in the population to ensure

diversity. The formula for calculating the crowding distance is as follows:

�� = �=1
�� |��

�+1−��
�−1|

��
���−��

��� （21）

where ��
�+1 denotes the value of individual � + 1 on the �-th objective function,

��
��� represents the maximum value of all individuals on the �-th objective function,

and ��
��� denotes the minimum value of all individuals on the � -th objective

function. Through the validation of numerous studies, the comparisons of crowding

are necessary to maintain the diversity of populations. For individuals in the same

frontier, we should prefer those with less crowding to ensure the diversity of

individuals. In addition, the NSGA-II algorithm is the first multi-objective
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optimization algorithm that proposes an elite strategy. Specifically, the parent

population �� and the offspring population �� are combined into a new population

of size 2� , and the top � individuals are selected into the population ��+1 by

performing fast non-dominated sort order and crowding calculation. It is worth noting

that additional judgments will be made by the crowding distance if the participation of

all individuals of an identical frontier would result in exceeding the population limit.

(b) Adaptive Crossover Operators

In order to improve the convergence of this algorithm as well as the merit-seeking

ability, an improvement method of adaptive crossover operator is proposed on the

basis of the original method. Binary crossover is employed in the standard NSGA-II

algorithm. The crossover operator is very convenient to implement, but the move

space is insufficient and the algorithm has a small search space, which is easy to fall

into local optimal solutions. Due to the deficiency of binary crossover operator, a new

crossover operator is introduced, that is, normal distribution crossover operator. The

normal distribution crossover operator has a large search range to satisfy the need for

powerful search capability in the early stage of the algorithm. Therefore, a large

proportion of the early populations in the iteration of the algorithm will use the

normal distribution crossover operator. When the algorithm is in the late iteration, the

individuals in the population are close to the optimal solution, and there is no need for

a large search range at this time. Therefore, a large proportion of the population

should be replaced with binary crossover operators to accelerate the convergence.

Based on this idea, this section introduces a factor that can adaptively adjust the

crossover degree of the algorithm according to the iterations, which increases the

crossover degree of individuals in the early stage and decreases it appropriately in the

later stage, and the update formula of the adaptive crossover operator is as follows:

�1 = �
2�

(� + ��) + �−�
2�

(� + beta × �) （22）

�2 = �
2�

(� − ��) + �−�
2�

(� − beta × �) （23）

�3 = �
2�

(� + ��) + �−�
2�

(� − beta × �) （24）

� = 1
1−e(�−�) （25）
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Suppose �1 and �2 are the selected parent individuals for crossover, then � =

�1 + �2 , � = �1 − �2 denotes the crossover operation. � denotes the current

number of iterations and � represents the total number of iterations of the algorithm.

���� is a normally distributed random variable.

(c) Adaptive regulation of population size

In the early stage of the algorithm, when a larger population is used, it can

improve the optimization search range of the algorithm. In the later stage, the

individuals in the iteration have basically converged to the optimal value, and fast

convergence is required. Therefore, it is no longer necessary to have a large-scale

population, and the convergence of the algorithm can be accelerated by reducing the

population size appropriately at this time. Based on the above analysis, a judgment

condition needs to be adapted to determine what is pre-algorithm and what is

post-algorithm. Each � iteration of the algorithm can produce � optimal values,

and the linear fitting method is used to find the slope of these � points. When the

absolute value of the slope is less than a certain value, it indicates that the

optimization process has been gradually stable, and the optimal solution is basically

obtained. At this time, large-scale population is no longer needed. The specific

judgment condition are formulated as follows:

| d(�(�))
d�

|�⩽� （26）

where | d(�(�))
d�

|� indicates the absolute value of the slope of the � points taken,

and � denotes the criterion for judging the pre-late stage of the algorithm. The

procedure of the improved NSGA-II algorithm is as follows:

1) Randomly generate an initial population �0 of 2� individuals;

2) Perform adaptive crossover and mutation operations to generate new populations

�� of number �;

3) Merge populations �� and �� to obtain �� and performing a fast

non-dominated sort on the merged populations;

4) Calculate the crowding distance and use the elite strategy to select � individuals

as the new the parent population ��;
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5) Determine whether the current iteration number � is not less than the maximum

iteration number �. If it is satisfied, the iteration of the algorithm is terminated;

6) After the current number of iterations � has reached �, the � optimal values

of � generations are selected for each iteration, and the judgment of Equation (26) is

performed. If it is true, return to step 2), otherwise proceed to the next step.

7) � populations are randomly generated, and the number of 2� population �� is

generated by merging with the parent population ��+1.

8) Perform a fast non-dominated sorting, elite strategy on the population �� to find

the optimal of � individuals and return to step 2). In summary, the flow chart of the

improved NSGA-II algorithm is shown in Fig. 1.

Fig.1. Algorithm flow chart of improved NSGA-Ⅱ
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4 Experiments and Analysis

4.1 Experimental environment and case study

In order to verify the feasibility and validity of the proposed model and algorithm,

this paper takes the example of the Barreto benchmark test (refer to

http://prodhonc.free.fr/Instances/instances_ us.html) as the object of calculation. In

this paper Python 3.8 was used to program experiments on a computer with an Intel

Core i5 processor, 4G RAM, and a 64-bit Windows operating system. In this section,

the 'Christ100 × 10' test scenario of the Barreto benchmarking example (with 100

customer sites and 10 distribution centers) is selected for the experiments, and the

results are presented in Table 2.

Table 2 Calculation results for the Christ100 × 10 example
Number of
distribution
centers

�1/$ �2/�� Distribution
Center Costs/$

Transportation
Costs/$

Fuel Costs/$

5 18367 7018.1 200 3309.8 14856.8
4 18403 6910.0 160 3390.9 14851.6
6 18693 6905.4 240 3534.5 14918.6
5 18837 6905.4 200 3544.5 15092.6
5 18907 6845.0 200 3634.3 14992.7
6 18987 6840.3 240 3655.0 15082.6
7 19023 6749.3 280 3612.8 15209.7

A detailed description of the Pareto frontier and the Pareto optimal solution for

the Christ100 × 10 example is given in Table 2. As shown in Fig. 2, there are three

types of solutions on the Pareto front for the Christ100× 10 test, that is, (1) the

solution with the smallest objective function �1 (total cost); (2) the solution with the

smallest objective function �2 (carbon emissions); and (3) the solution that is more

compromising for the both objectives. Obviously, as the number of distribution

centers increases, the cost of opening a distribution center also increases, and the

corresponding total cost also increases. However, with the increase in the number of

distribution centers, the carbon emissions will decrease accordingly. This is because

the increase in the number of distribution centers will result in shorter distances for

delivery vehicles, which will directly contribute to the reduction of carbon emissions.

Ultimately, we offer 7 solutions with excellent performance. Depending on the degree

of preference for total cost and carbon footprint, the appropriate solution can be

selected.
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Fig.2. The pareto front for the Christ100 × 10 test

4.2 Comparison of Algorithms

In this section, NSGA-II, SPEA2 [22] and the improved NSGA-II algorithm of

this paper are selected for comparison. Because NSGA-II and SPEA2 are two

traditional heuristic algorithms with different frameworks, the operators cannot be

unified. For the sake of fairness, we can only ensure that the population size, the

number of iterations, and the cross-variance rate are consistent. The specific settings

of the experimental parameters are shown in Table 3.

Table 3 Calculation results for the Christ100 × 10 example
Parameters Setting values
Population size 100
Maximum of iterations 80
Crossover probability 0.88
Mutation probability 0.04

In this section, we choose the Christ100 × 10 test case, and use NSGA-II, SPEA2,

and improved NSGA-II algorithms to solve the scheduling scheme, and compare the

four scheduling schemes. As can be seen from Fig. 3, the Pareto fronts obtained using

the improved NSGA-II algorithm completely dominate the Pareto fronts calculated by

NSGA-II, SPEA2. This indicates that the scheduling solution obtained by the

improved NSGA-II algorithm is less than the scheduling solution obtained by the

other two algorithms in terms of both total cost and carbon emissions. This is because,
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traditional multi-objective algorithms use binary crossover operators, which are

inefficient in solving large-scale LRP (complex NP-Hard problems). Through the

comparison of the algorithms, it is demonstrated that the improved NSGA-II

algorithm has significant advantages in solving large-scale LRP.

Fig.3. The pareto front for the Christ100 × 10 test

Then, we also compare and analyzes the convergence of single objective in the

iterative process of dual objective optimization through the change of single objective

value with the number of iterations. As shown in Fig. 4(a), the SPEA2 algorithm has

the worst optimization effect and falls into partial convergence after about 30

iterations. In Fig. 4(b), we can also see similar results, i.e., the NSGA-II algorithm

falls into a local optimum early in the iteration. In contrast, the improved NSGA-II

algorithm in this paper has good optimization results in both iterations of the objective

function, which proves that the algorithm has excellent search ability.
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(a)

(b)

Fig.4. The pareto front for the Christ100 × 10 test

5 Conclusion

In this paper, we study the multi-objective optimization problem of

environmental LRP by considering the objectives of distribution center opening,

transportation, fuel cost and carbon emission, and establish a bi-objective model to

minimize the total cost and carbon emission. Then, an improved NSGA-II

optimization algorithm is proposed to optimize the distribution center location and

logistics distribution scheduling scheme, and the optimal scheduling scheme is

obtained. Then, we performed validation experiments using a test scenario named

Christ100 × 10 in the Barreto benchmark instance. By comparing with NSGA-II and

SPEA2 algorithms from Pareto front, total cost and carbon emission convergence, the

optimization results and comparative analysis prove the effectiveness of the improved

NSGA-II algorithm in this paper.
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